
Swinburne Research Bank
http://researchbank.swinburne.edu.au

Author: Amin, A., Grunske, L., & Colman, A.
Title: An approach to software reliability prediction

based on time series modeling
Article number:
Year: 2013
Journal: Journal of Systems and Software
Volume: 86
Issue: 7
Pages: 1923-1932
URL: http://doi.org/10.1016/j.jss.2013.03.045
Copyright: Copyright © 2013 Elsevier Inc.

This is the author’s version of the work, posted here with the permission of the publisher for your
personal use. No further distribution is permitted. You may also be able to access the published
version from your library.

The definitive version is available at: http://www.sciencedirect.com/

Powered by TCPDF (www.tcpdf.org)

Swinburne University of Technology | CRICOS Provider 00111D | swinburne.edu.au

http://www.tcpdf.org


An Approach to Software Reliability Prediction Based on Time
Series Modeling

Ayman Amin∗,1, Lars Grunske2, Alan Colman1

Abstract

Reliability is the key factor for software system quality. Several models have been introduced
to estimate and predict reliability based on results of software testing activities. Software Reli-
ability Growth Models (SRGMs) are considered the most commonly used to achieve this goal.
Over the past decades, many researchers have discussed SRGMs’ assumptions, applicability, and
predictability. They have concluded that SRGMs have many shortcomings related to their unreal-
istic assumptions, environment-dependent applicability, and questionable predictability. Several
approaches based on non-parametric statistics, Bayesian networks, and machine learning meth-
ods have been proposed in the literature. Based on their theoretical nature, however, they cannot
completely address the SRGMs’ limitations. Consequently, addressing these shortcomings is
still a very crucial task in order to provide reliable software systems. This paper presents a
well-established prediction approach based on time series ARIMA modeling as an alternative
solution to address the SRGMs’ limitations and provide more accurate reliability prediction. Us-
ing real-life data sets on software failures, the accuracy of the proposed approach is evaluated
and compared to popular existing approaches.

Key words: Reliability Prediction, Software Reliability Growth Models, Time Series ARIMA
Models

1. Introduction

Software has been increasingly used in our daily life and has become a crucial part of criti-
cal and non-critical applications. Because of this increasing use and importance, the assurance
of software quality becomes an issue of critical concern. Software quality can be expressed
by quality requirements or attributes such as reliability, availability, safety, security, and perfor-
mance. Among these software quality attributes, software reliability is generally considered as
the most important factor [1]. It quantifies software faults and failures, which can lead to serious
consequences in safety-critical systems as well as in normal business [2]. Therefore, assessing,
estimating, and predicting software reliability have been increasingly demanded in projects in
order to achieve highly reliable software systems.

∗Corresponding author.
Email addresses: aabdellah@swin.edu.au (Ayman Amin),

lars.grunske@informatik.uni-stuttgart.de (Lars Grunske), acolman@swin.edu.au (Alan Colman)
1Faculty of Information and Communication Technologies, Swinburne University of Technology, Australia
2Institute of Software Technology, University of Stuttgart, Germany

Preprint submitted to Journal of Systems and Software February 2, 2013



To address this demand, starting from the work of Jelinski and Moranda [3] a considerable
number of Software Reliability Growth Models (SRGMs) has been proposed. These models
specify the form of a stochastic process that describes the software behaviour with respect to
software failures in order to be used for reliability estimation, measurement of the current state,
and prediction of the future state [4]. (For more details about these models, see [5, 4]). These
models require underlying assumptions to be applied, such as independence of time between
failures, immediate correction of detected faults, and fault correction without introducing new
faults. However, some of these assumptions seem unrealistic [5, 6, 7]. In addition, SRGMs’
applicability has become a critical issue because theres is no single model which can be univer-
sally used in all the situations [5, 8]. Regarding SRGMs’ predictability as the main goal of using
SRGMs, these models have been shown to be able to model and fit the past software failures
data, however, they do not give accurate prediction [9].

To address these issues, approaches based on non-parametric statistics [10, 11] and Bayesian
networks [12, 13, 14, 15] have been proposed as solutions in the literature. However, all of these
solutions are not complete [5]; because if one solution is able to address one issue, it cannot
address the others. For example, non-parametric approaches are able to address the unrealistic
assumptions issue; however, they cannot completely address the applicability and predictability
issues.

As a result, approaches based on neural networks and other machine learning methods [16,
17, 18, 19, 20, 21, 22] have been introduced. However, the main disadvantage of these ap-
proaches is that they require a large training data set as input/output examples to get a correct
learning, which is computationally intensive and time consuming process. In addition, some
authors [23, 24, 25, 26] have tried to use ARIMA models as an alternative solution. However,
these trials are conducted in an abstract way, and they have critical limitations in: (1) Checking
and satisfying the underlying assumptions of ARIMA models, which are necessarily required to
get a correct ARIMA model for the given software reliability data; (2) How to practically con-
struct in specific steps an ARIMA model for the given software reliability data. Consequently,
proposing an approach which addresses these limitations and gives accurate reliability prediction
is urgently needed to provide highly reliable software systems.

In this paper, we present a well-established prediction approach based on time series ARIMA
modeling as a good alternative solution to address the limitations of SRGMs and the existing ap-
proaches and provide more accurate reliability prediction. The main advantage of this prediction
approach is that it is a data-oriented approach and therefore does not require any restrictive as-
sumptions on the environment of the software system under analysis. In addition, the approach
utilizes statistical methods to check whether the given software reliability data satisfies the under-
lying assumptions of ARIMA models, and in the case of dissatisfaction it uses suitable statistical
remedies. Moreover, the approach constructs an ARIMA model for the given software reliability
data set according to specific and clear steps.

In brief, the proposed approach consists of six phases: (1) Observing the software reliability
data over a period of time, and checking for and satisfying ARIMA models assumptions; (2)
Identifying adequate ARIMA models to describe this data; (3) Fitting the identified models using
estimation methods; (4) Checking the adequacy of these estimated models; (5) Selecting the best
model among the adequate models; and finally (6) Using the constructed prediction model to
predict future reliability values.

The rest of this paper is organised as follows. Related work including SRGMs and alter-
native solutions are discussed in Sections 2. Section 3 introduces time series ARIMA models
background. Our proposed prediction approach for software reliability is presented in Section 4.

2



Evaluation of our approach and its comparison to selected existing approaches are presented in
Section 5. Finally, Section 6 concludes the paper.

2. Related Work

2.1. Software Reliability Growth Models

The goal of Software Reliability Growth Models (SRGMs) is to specify the form of a stochas-
tic process that describes the software behaviour with respect to software failures. This stochas-
tic process of failures behaviour can then be used for reliability estimation, measurement of the
current state, and prediction of the future state [4]. SRGMs assume that corrections and modifi-
cations are made to the system as the testing progresses resulting in a decreasing failure rate and
increasing reliability.

Starting from the work of Jelinski and Moranda [3], SRGMs have received much attention
where hundreds of publications have been written and more than 100 different forms of models
have been proposed [2]. These proposed models can be classified into two groups: Time between
failures models and failure count models [5]. The Jelinski-Moranda model [3] is the earliest of
the time between failures models, while the Goel-Okumoto Nonhomogeneous Poission Process
(NHPP) model [27] is the earliest of the failure count models [4].

SRGMs require underlying assumptions to be used. However, some of these assumptions
are questionable and seem unrealistic. In the following, the most important assumptions are
discussed.

1. Independence of Time Between Failures: Time between failure models assume that suc-
cessive failure times are independent of each other. This assumption can be satisfied if
successive test cases are chosen randomly. In practice, systematic testing, especially func-
tional testing, is not based on independent test cases, so that the test process is likely not
random and has dependence [5]. This in turn means that the time between failures are
dependent.

2. Immediately Correcting Detected Faults: Some models require this assumption and as-
sume that faults are immediately corrected when they are discovered. This assumption
is satisfied only if the testing process stops until the detected fault is repaired. In many
testing situations, the testing process continues without correcting a detected fault, and the
fault detection process behaves as if the fault had been corrected [5, 28, 29]. In this case,
if there are N faults when a fault is detected and testing continues, the fault detection rate
will be different than assumed by the model since the software program will still have N
faults rather than the assumed (N-1) faults [7].

3. Correcting a Fault Without Introducing New Faults: This assumption is required to ensure
that the failures process have a monotonic decreasing pattern. Thus, the only way to satisfy
is to ensure that the correction process does not introduce new faults [5]. However, it is
agreed that fault correction can always introduce new faults [7]. An argument can be
made that if introduced faults constitute a very small fraction of the fault population, their
practical effect on model results will be minimal [5].

It should be noted that any software development process is environment-dependent, and
some assumptions may be realistic only in certain situations. More discussions about SRGMs
assumptions are presented in [5, 6, 7]. For example, Zeitler [6] presented a well-made argu-
ment about these assumptions, and the author concluded that the best solution to overcome the

3



problem of unrealistic assumptions is to use time series ARIMA models. Also, the paper pre-
sented statistical proof that ARIMA models are able to accurately map the stochastic behaviour
of software failures processes.

Applicability is another important issue in using SRGMs. Currently, there is no single model
which can be universally used in all the situations [5]. Hence, various models are applied, and
then the best one is selected according to the given situation. This process is a time consuming
and requires experts to choose the best model based on the development environment considera-
tions.

Predictability is considered the main goal from using SRGMs. It can be defined as the
ability to forecast future reliability using the collected data, which is usually in the form of
time between failures or the number of failures. The importance of predictability comes from
that all the practical questions involve forecasting the future reliability values. When asking if a
model is giving accurate reliability measures, it is really asking if it is predicting accurately [30].
Another factor that increases this importance is that the ability to capture the past accurately
does not necessarily imply an ability to predict the future accurately [31]. Although SRGMs
have been shown to be able to model and fit the past software failure data, they do not give
accurate prediction [9].

2.2. Alternative Solutions
The research community has presented many solutions to address SRGMs’ issues. Non-

parametric statistics [10, 11] and Bayesian networks [12, 13, 14, 15] have been used to address
the issue of unrealistic assumptions issue. However, these solutions do not remedy the other is-
sues of applicability and predictability. In addition, neural networks and other machine learning
methods [16, 18, 19, 20, 21, 22] have been applied to address this issue. Their main disadvan-
tage is that they need extensive learning to give accurate measures and forecasts, which is a
computationally intensive and time consuming process.

To solve the SRGMs applicability problem, some solutions have been presented using com-
bination of models [8, 32, 33, 34, 35]. The primary drawbacks of these solutions are that they
are very complicated, and do not guarantee getting the best model. For example, a Supermodel
[33] is a combination of SRGMs. This model needs intensive computations to be estimated, and
it also has the same issues related to unrealistic assumptions and predictability.

A number of researchers have tried to apply time series models, especially ARIMA models,
for reliability prediction [23, 24, 26]. Their main result is that time series models can address
SRGMs’ issues, and they have the ability to give more accurate forecasts. In addition, Junhong et
al. [36] proved that the Goel-Okumoto NHPP model [27], the most commonly used in software
reliability prediction, can be transformed into an autoregressive model of order one (AR(1)).
This result states that the most important software reliability model is a special case of ARIMA
models, and this opens a new research area how to exploit the ARIMA modeling advantages in
software reliability prediction.

However, while time series ARIMA models have the ability to address SRGMs’ limitations
and provide more accurate forecasts, the existing applications of these models for reliability
prediction are in the initial stage and face critical limitations:

1. Checking and satisfying ARIMA models assumptions: The existing applications do
not discuss the underlying assumptions of ARIMA models, how these assumptions can be
verified in practice, and if they are not satisfied what are the remedies which can be used to
address this issue. This is critical task because satisfying these assumptions is a necessary
requirement to construct a correct ARIMA model for the given software reliability data.

4



2. Constructing ARIMA models: Existing approaches do not explain how these models can
be practically constructed for the given software reliability data in specific and clear steps
which can help others, e.g. software engineers, in using these models.

Consequently, proposing an approach which can address these limitations and provide accu-
rate reliability prediction is crucially required. In this paper, we propose a well-established pre-
diction approach which can help a software reliability engineer construct the correct prediction
model in an easier way, thereby providing much more accurate reliability predictions relatively
to the other existing approaches.

3. Time Series ARIMA Models Background

Autoregressive Integrated Moving Average (ARIMA) models were originally proposed by
Box and Jenkins [37], and they are commonly used in practice to model time series data to
forecast the future values. These models to be used to model time series data; they require some
assumptions time series data should satisfy to provide accurate forecasts. In this section, we
present ARIMA models and discuss their main assumptions.

3.1. ARIMA Models

The time series {yt} is said to be generated by an ARMA model of orders p and q , denoted
by ARMA(p,q), if it satisfies:

ϕp(B)yt = θq(B)εt (1)

where, {εt} is a sequence of independent normal errors with zero mean and variance σ2. The
backshift operator B is defined as Bd xt = xt−d. The autoregressive polynomial is ϕp(B) =(
1 − ϕ1B − ϕ2B2 − . . . − ϕpBp

)
with order p and θq(B) =

(
1 + θ1B + θ2B2 + . . . + θqBq

)
is

the moving average polynomial with order q. The autoregressive and moving average coeffi-
cients are ϕ =

(
ϕ1, ϕ2, . . . , ϕp

)T
and θ =

(
θ1, θ2, . . . , θq

)T
respectively. The model (1) can be

simplified and written as

yt =

p∑
i=1

ϕiyt−i +

q∑
i=1

θiεt−i + εt (2)

where, yt is the current stationary observation, yt−i f or i = 1, ..., p are the past stationary
observations, εt is the current error, and εt−i for i = 1, ..., q are the past errors.

If the original time series {zt} is non-stationary, then d differences can be done to transform it
into a stationary one {yt}. This differences-based transformation is denoted by yt = ∇dzt, where
∇d = (1 − B)d and B is the backshift operator. In this case, the time series {zt} is said to be
generated by an Autoregressive Integrated Moving Average (ARIMA) model of orders p, d, and
q and is denoted by ARIMA(p, d, q).

3.2. Assumptions of ARIMA Models

The main assumptions of ARIMA models are normality, stationarity and invertibility [37].
These assumptions are discussed in some details in the following:

5



1. Normality: ARIMA model assumes that the given time series data is normally distributed,
as all the computations of identifying, estimating, and evaluating its parameters are based
on the normal distribution. In the case of non-normally distributed time series data, it can
be approximated to normal distribution using specific power transformations, e.g., Box-
Cox transformation [38].

2. Stationarity: Roughly speaking, stationarity means the time series has constant mean and
variance, no trend and same variation, over time. When time series has no trend, it is called
stationary in the mean; and when it has same variation over time, it is called stationary in
the variance. However, if the original time series is non-stationary, it can be transformed
into a stationary in the mean using differences and into a stationary into the variance using
power transformations.

3. Invertibility: ARIMA model to be used to forecast the future values it should be invertible.
This means the error term in ARIMA model should be expressed in the other terms ,
i.e. εt = yt −

∑p
i=1 ϕiyt−i −

∑q
i=1 θiεt−i, to enable forecasting. For example, in the simplest

case, MA(1), error term can be written as: εt = yt − θεt−1, and it can be proved that they
are equivalent to: εt = yt −

∑∞
i=1 θ

iyt−i. This model cannot be used for forecasting future
errors unless εt has a finite value which requires that θ to be less than one, and this is the
invertibility concept.

Investigating whether the given time series data satisfies these assumptions is a critical task,
because falling to satisfy the assumptions leads to selecting incorrect ARIMA model that in
turn will provide significantly incorrect forecasts. In section 4 we discuss in detail how these
assumptions can be verified, and if they are not satisfied, how we can deal with this issue through
an illustrative example.

4. The Proposed Prediction Approach

The proposed approach builds on the Box-Jenkins ARIMA models and proposes a paral-
lelized modeling procedure. The main goal of the proposed approach is to check for and satisfy
ARIMA models’ assumptions, and construct the best ARIMA model for the given software reli-
ability time series data in order to provide accurate predictions.

This approach is a data-oriented approach and does not impose any restrictive assumptions
on the environment of the data, in contrast to existing SRGMs. Consequently, this approach can
address the SRGMs’ issues discussed above. It assumes the failure time series data is dependent,
which is valid for time between failures and the number of failures, and uses this dependency to
identify the best model. This implies that there is no need to arbitrarily assume a model prior
to data analysis, which solves both unrealistic assumptions and applicability issues. Regarding
predictability, it is known in the literature that ARIMA models are the most powerful technique
for accurately predicting the future values [37, 39].

In summary, as depicted in Figure 1 the approach first checks for the underlying assumptions
of ARIMA models and in the case of dissatisfaction of these assumptions uses some statistical
remedies and transformations. Second, the approach identifies a combination of adequate mod-
els based on Auto-Correlation Function (ACF) and Partial Auto-Correlation Function (PACF).
Third, it fits these identified models using the Maximum Likelihood Estimation (MLE) method.
Fourth, it checks the adequacy of all the estimated models. Fifth, it selects the best model among
the adequate models using Akaike’s information criterion (AIC) [40]. Finally, it uses the selected
model, which is the best model to describe the given data, to predict the future values. In the

6



rest of this section the proposed prediction approach is introduced in detail and explained by a
running example of a real-life data set on software failures which is called “System 40 data”.
This data set is time between failures data that has been published by Musa [41].

Collected

Failures Data

           (P3)
Estimate Identified
         Models

          (P4)
Check Diagnostics
    of The Models

          (P5)
Select The Best
         Model

         (P1) 
 Check & Satisfy
   Assumptions

        (P2)
Specify adequate
      Models

           (P6)
Compute ForecatsForecasts

Figure 1: The proposed prediction approach

(P1) Data Preparation
Before ARIMA models can be constructed, the given time series data should satisfy the

underlying assumptions described above. Consequently in this phase, we use some powerful
statistical tests to check for these assumptions, and if they are not satisfied, we try to find the
suitable transformation to make the data approximately fulfils the assumptions.

Example ◃ For the “System 40 data” [41], which is labelled ”sys40” in our example, the
ARIMA model assumptions can be verified as follows:
Serial dependency: The approach has used the runs test [42] to test whether the time series are
mutually independent. It has concluded that it is significantly serially dependent where p-value
equals to 0.021 ( < 0.05).
Normality: The approach used the K-S test [42] to test whether the sys40 data is drawn from
normal distribution. It has concluded that this data is not normally distributed, and the histogram
depicted in Figure 2a visualizes that and explains that the data is skewed to the right or positively
skewed. To transform the data to be (approximately) normally distributed, the approach has
used the Box-Cox transformation and concluded that the log of the data (referred as lsys40) is
approximately normally distributed, as shown in Figure 2b.
Stationarity: Our approach used the KPSS test [43] to test whether the lsys40 data is stationary,
and found that it is not stationary where the p-value equals to 0.028 ( < 0.05) and this is explained
in Figure 2c where the ACF decays slowly. Using the first difference, the approach concluded
that the differenced data (referred as dlsys40) is stationary where the p-value equals to 0.465. ▹

(P2) Model Identification
After the time series data is prepared, the model identification phase starts which selects the

best suitable parameter p, d, and q for the ARIMA(p,d,q) model. The model identification is
based on ACF and PACF [37] as follows. If the ACF curve decays and the PACF curve cuts off,

7



AR models are adequate to model the processed data. In contrast, if the ACF curve cuts off and
the PACF curve decays, MA models are adequate. In addition, if both ACF and PACF curves cut
off or decay, ARMA models are adequate. It is worth mentioning that our proposed prediction
approach does not identify only one adequate model, but rather it identifies a combination of
adequate models based on the dependency structure of the given failures data set.

Example ◃ The ACF and PACF of the prepared data, dlsys40, are computed and plotted
in Figure 2d. Based on these functions, the identified ARIMA models are: ARIMA(1,1,0),
ARIMA(0,1,1), ARIMA(1,1,1), ARIMA(0,1,2), and ARIMA(1,1,2). It is worth noting that d = 1
is already determined in P1. ▹

(a) Histogram of time between failures data (b) Histogram of logged time between failures data

(c) ACF and PACF of logged time between fail-
ures data

(d) ACF and PACF of differenced logged time
between failures data

Figure 2: Histograms, ACFs and PACFs of time between failures of system 40 data

8



(P3) Model Estimation
In the model estimation phase, values of the parameters of the identified models in phase

P2 are analysed to provide the best fit to the given time series data. Non-linear least squares
and maximum likelihood estimation (MLE) are the two main methods used to estimate ARIMA
models. However, the latter one is generally the preferred technique, as it is faster and gives more
accurate estimates [37]. Therefore, it is recommended to be used in our proposed approach. To
explain the main idea of the maximum likelihood estimation method, suppose y = (y1, y2, . . . , yn)
is a time series of the ARMA model (2), given that εt ∼ Normal(0,σ2), the likelihood function, l,
is given by:

l ∝ (σ2)−
n
2 exp

− 1
2σ2

n∑
t=1

(εt)2

 (3)

where εt = yt −
∑p

i=1 ϕiyt−i −
∑q

i=1 θiεt−i. Values of the parameters ϕi’s and θi’s that maximize the
likelihood function (3) are called maximum likelihood estimates.

Example ◃ After identifying the adequate ARIMA models in P2, the approach used the MLE
method for each model to estimate the parameters, and the estimates are depicted in Table 1. ▹

Model Parameter Estimate Std. Error P-value
I AR(1) -0.6964 0.0074 0.0000
II MA(1) -0.8426 0.0059 0.0000

III AR(1) 0.0762 0.0204 0.0011
MA(1) -0.8582 0.0035 0.0000

IV MA(1) -0.9365 0.0198 0.0000
MA(2) -0.0621 0.0212 0.0054

V
AR(1) 0.2986 0.0953 0.0013
MA(1) -1.1302 0.0964 0.0000
MA(2) 0.3122 0.0953 0.0170

Table 1: The identified ARIMA models estimation

(P4) Model Diagnostics Checking
Model checking involves testing the diagnostics of the ARIMA models to identify whether

they are satisfied. If one or more diagnostics are not satisfied, the current model is inadequate
and should be removed from the set of models identified in P2. The main diagnostics that need
to be performed to check the fitted ARIMA models are estimates significance, invertibility and
stationarity conditions, and residuals randomness.

(P4.1) Estimates Significance Test
Each estimate is tested to check whether it is statistically significant using a t-test:

t =
estimate value

standard error o f estimate
(4)

If the calculated t value for an estimate is significantly greater than a predetermined critical value
(= 1.96, for significance level = 0.05), it is significant and retained in the model. Otherwise, the
model requires a recalculation using the remaining terms.

9



(P4.2) Invertibility and Stationarity Conditions Satisfaction
In the model checking phase, invertibility and stationarity conditions can be checked as fol-

lows: (1) Stationarity Condition: the sum of the coefficients of AR model should be less than
one, which means that

∑p
i=1 ϕi < 1; and (2) Invertibility Condition: the sum of the coefficients of

MA model should be less than one, which means that
∑p

i=1 θi < 1.

(P4.3) Residuals Randomness
Residuals of the well-fitted model will be random and approximately follow the normal distri-

bution. For this condition, residuals can be analysed by plotting their ACF and PACF to observe
whether these functions are statistically equal to zero. In addition, a hypothesis test, i.e. the Box-
Pierce test [44], is performed to make statistically significant decision regarding this condition.

Example ◃ The approach computed the t-test for all the estimates and its p-values are depicted
in Table 1. It is clear that all the models’ estimates are significant. Also, from Table 1 it is
evident that all the models, except the last model, satisfy invertibility and stationarity conditions.
To analyse the residuals, the approach has used Box-Pierce test [44] and concluded that all the
models’ residuals are uncorrelated except the last model’s residuals, where the p-value equals to
0.035 ( < 0.05). ▹

(P5) Best Model Selection

Once the identified models as a combination have been estimated and checked, the best model
is selected based on Akaike’s information criterion (AIC) [40]:

AIC = 2k − 2ln(L) (5)

where k is the number of parameters in the estimated model, and L is the maximized value of
the likelihood function for the estimated model. The best model is the one that has the minimum
AIC value.

Example ◃ Based on the diagnostics checking in P4, the first four estimated models are
adequate to fit and forecast the future values of dlsys40. The AIC values for these models
are: 15.2151, 15.1852, 15.1998, and 15.2054 respectively. Accordingly, the second model,
ARIMA(0,1,1), is the best model that can be used to predict the future values of System 40
data. ▹

(P6) Model Based Prediction

After selecting the best model, it is ready to be used for forecasting the future values of
the given data. For more illustration, ARIMA model (2) after the estimation can be written as
follows:

ŷt =

p∑
i=1

ϕ̂iyt−i +

q∑
i=1

θ̂iε̂t−i + ε̂t (6)

To predict one-step-ahead values, it is moved from (t) to (t+1):

ŷt+1 =

p∑
i=1

ϕ̂iyt+1−i +

q∑
i=1

θ̂iε̂t+1−i + ε̂t+1 (7)

10



and similarly it can be moved to predict multi-step-ahead values.
Example ◃ The best model selected in P5 can be rewritten as follows:

ẑt = zt−1 − (0.84263)εt−1 + εt (8)

Using this model, the one-step ahead predictions of the last eleven observations are given in
Table 2. ▹

Failure Actual Predicted Failure Actual Predicted
Number Value Value Number Value Value

91 4.937 4.395 97 5.552 4.585
92 4.948 5.157 98 5.715 4.281
93 6.259 3.646 99 5.539 5.011
94 3.619 4.027 100 4.496 3.501
95 3.505 4.501 101 5.424 4.944
96 5.299 4.472

Table 2: Predictions of the logged time between failures

5. Evaluation

In this section, we discuss how our proposed approach addresses the critical limitations dis-
cussed in Section 2 and outperforms the SRGMs and the existing time series based approaches.

5.1. Experiment Setup
We identify the main research questions of our experiments as follows:

RQ1: Does the proposed approach outperform traditional SRGMs and improve the prediction
accuracy?
RQ2: Does the proposed approach outperform time series and machine learning based ap-
proaches and improve the prediction accuracy?

In order to address RQ1, we apply our proposed prediction approach and the Jelinski-Moranda
(JM) model to a benchmark time between failures (TBF) data set of sixteen real-world software
systems [41]. The list, description, and number of failures of these software systems are reported
in Table 3.

After that, for each data set prediction we compute the mean squared errors (MSE) measure
as follows:

MS E =
1
n

n∑
t=1

[yt − ŷt]2, (9)

where yt and ŷt are the real and predicted values, respectively. We analyse these errors using
boxplots and descriptive statistics. To test whether the proposed approach significantly outper-
forms the JM model in terms of prediction accuracy, we use the non-parametric Mann-Whitney
test [42]. Additionally, we measure the relative prediction accuracy improvement using a metric
RAIMS E which is defined as:

RAIMS E =
MS EJM − MS EOurs

MS EJM
× 100, (10)

11



System Size (Delivered Object Number of
Code Application Code Instructions) Failures

1 Real Time Command & Control 21,700 136
2 Real Time Command & Control 27,700 54
3 Real Time Command & Control 23,400 38
4 Real Time Command & Control 33,500 53
5 Real Time Commercial 2,445,000 831
6 Commercial Subsystem 5,700 73

14C Real Time Hundreds of Thousands 36
17 Military 61,900 38
27 Military 126,100 41
40 Military 180,000 101

SS1A Operating System Hundreds of Thousands 112
SS1B Operating System Hundreds of Thousands 375
SS1C Operating System Hundreds of Thousands 277
SS2 Time Sharing System Hundreds of Thousands 192
SS3 Word Processing System Hundreds of Thousands 278
SS4 Operating System Hundreds of Thousands 196

Table 3: Software reliability data project information

where MSEOurs and MSEJM refer to the MSE values produced by our proposed approach and
JM model, respectively.

To address RQ2, we review the existing time series based and machine learning based ap-
proaches and classify them into four classes:

1. Random coefficient autoregressive process based approach, i.e. Singpurwalla and Soyer
[23].

2. Autoregressive process based approach, i.e. Chatterjee et al. [24].
3. ARIMA process based approach, i.e. Xie and Ho [26].
4. Support vector regression of time series based approach, i.e. Moura et al. [22].

After that, we apply the proposed approach to the same real-life TBF data sets that are used
in the original articles of these existing approaches and compute the predictions. Based on the
prediction results of the aforementioned approaches, we compute the MSE and RAIMS E metrics.

5.2. Results
RQ1. Improving prediction accuracy compared to traditional SRGMs

Boxplots of relative prediction errors are depicted in Figure 3, while MSE values of the
proposed approach and the JM model are reported separately for each system in Table 4. The
boxplots highlight that the proposed approach can provide more accurate predictions than the JM
model, where the prediction errors exhibited by our approach are significantly lower than those
of the JM model. This result is confirmed by the Mann-Whitney test where the p-value < 0.05.
More precisely, as seen from Table 4, the proposed approach produces MSE = 3.00 comparing
to 3.93 produced by the JM model with relative accuracy improvement is about 22.2%.

Boxplots show another observation that the variation of prediction errors exhibited by the
proposed approach is significantly lower than that of JM model. Where, 50% of the prediction

12



(1) Our Approach (2) JM Model

0
20

40
60

80

R
el

at
iv

e 
Er

ro
r (

%
)

Figure 3: Boxplots of relative prediction errors

errors are within (4.21, 12.29) with range = 8.08 for the proposed approach, and within (4.77,
16.83) with range = 12.05 for JM model. This implies that the proposed approach’s prediction
accuracy is more stable across different failures-related data sets than that of the JM model.

For each system, it is clear from Table 4 that the proposed approach outperforms the JM
model in all the cases. This result is also confirmed by the Mann-Whitney test, where all the
p-values < 0.05. The lower and higher accuracy improvement of the approach comparing to the
JM model are in the cases of system “SS3” with RAIMS E is about 6.32% and system “5” with
RAIMS E is about 66.25%, respectively.

RQ2. Improving prediction accuracy compared to existing time series and machine learning
based approaches

In the following we compare our approach to the existing time series based approaches.

(1) Our approach vs. random coefficient autoregressive process based approach. Singpurwalla
and Soyer [23] have proposed an autoregressive model to fit and predict time between failures as
a metric of reliability growth. Mainly, they assumed that the parameters (or coefficients) of these
models are random, which means they have different values at each point of time. They evaluated
the accuracy of this model using System 40 data [41], and their forecasting results are available
in [23]. (It is worth noting that they applied their approach to the transformed, not original, data
set using natural logarithm).

13



System MSE Values RAIMS E

Code Our Approach JM Model Values
1 1.65 2.04 19.22
2 0.93 1.16 20.43
3 1.71 2.32 26.42
4 1.08 1.56 30.62
5 2.64 7.84 66.25
6 2.38 2.87 17.13

14C 2.26 3.86 41.55
17 1.31 1.65 20.96
27 2.24 2.64 14.98
40 2.71 3.67 26.16

SS1A 3.34 3.58 6.59
SS1B 3.18 4.52 29.59
SS1C 3.78 4.90 22.97
SS2 4.74 5.56 14.77
SS3 8.10 8.64 6.32
SS4 5.87 6.79 13.51

Average 3.00 3.93 22.16

Table 4: MSE and RAIMS E values for our approach vs. JM model

We have applied our approach to the same data set as explained in detail in our running
example, and the prediction results of the last eleven observations are depicted in Table 2. In
addition, we have computed the MSE measure for the prediction results. The MSE values are
2.71 produced by our approach comparing to 5.03 produced by Singpurwalla and Soyer’s ap-
proach, which indicates that our approach gives more accurate predictions than their approach
with relative accuracy improvement is about 46.1%.

(2) Our approach vs. autoregressive process based approach. Chatterjee et al. [24] applied
autoregressive models to predict the future values of software reliability. They evaluated their
approach using two real life data sets of System 5 and System 40 [41]. Therein, they propose the
following two autoregressive models:

ẑt = (0.38094)zt−1 + (0.25714)zt−3 + εt (11)
ẑt = (0.12988)zt−3 + (0.12098)zt−6 + (0.10243)zt−13 + (0.13355)zt−17 + εt (12)

to predict the future values of the System 5 and System 40 data sets, respectively. (It is worth
noting that they applied their approach to the transformed, not original, System 40 data set using
the base-10 logarithm). We have used these two autoregressive models to re-produce Chatterjee
et al.’s predictions and applied our approach to the same data sets to compute our predictions.
We have computed the MSE measure for Chatterjee et al.’s and our approach prediction results,
as given in Table 5. It is evident that our approach gives more accurate predictions than their
approach with relative accuracy improvement is on average about 20%.

(3) Our approach vs. ARIMA process based approach. Xie and Ho [26] have applied ARIMA
models to predict the future values of software failures. They evaluated their approach using four

14



System MSE Values RAIMS E

Code Our Approach Chatterjee et al.’s Values
5 2.64 3.18 16.98
40 2.53 3.28 22.87

Average 2.59 3.23 19.93

Table 5: MSE and RAIMS E values for our approach vs. Chatterjee et al.’s approach

real-life data sets [26]. To predict the future values of the four data sets, they have proposed four
ARIMA models, which are depicted in Table 6.

Using the proposed ARIMA models by Xie and Ho and our approach, we compute predic-
tions for the four data sets and their MSE values, as depicted in Table 7. We can see from Table
7 that our approach gives on average MSE value less than Xie & Ho’s by about 62.7%, which
implies that our approach provides much more accurate predictions. Moreover, it is worth noting
that Xie & Ho’s models do not satisfy the stationarity and invertibility conditions, e.g. for data
set 2 the absolute parameter estimate value (= 1.16) is greater than one.

Data set Model
1 ẑt = zt−1 + εt − (0.96)εt−1
2 ẑt = zt−1 + εt − (1.16)εt−1 + 25.3
3 ẑt = (1.27)zt−1 + (0.47)zt−2 − (0.73)zt−3 + εt

4 ẑt = (0.95)zt−1 + (0.05)zt−2 + εt − (0.087)εt−1

Table 6: Fitted ARIMA models for the four data sets by Xie and Ho [26]

MSE Values RAIMS E

Data set Our Approach Xie & Ho’s Values
1 257.99 320.61 19.53
2 105712.90 395646.00 73.28
3 24.10 230.39 89.54
4 22.27 70.84 68.56

Average 26504.32 99066.96 62.73

Table 7: MSE and RAIMS E values for our approach vs. Xie & Ho’s approach

(4) Our approach vs. support vector regression based approach. Moura et al. [22] have pro-
posed Support Vector Regression (SVR) method for reliability prediction. This SVR method is
a kind of learning method that builds its approximation function based on underlying concepts
that rise from statistics theory as well as on a set of input/output examples that come up from the
process under analysis [22]. While this method can provide more accurate predictions than the
other existing approaches, it requires relatively a large training data set as a set of input/output
examples and consumes time to get correct learning and approximation function of the given
process. This is basically the main disadvantage of most of learning methods [45].

Moura et al. have evaluated their approach using two real-life reliability data sets, which
are time between failures for turbochargers in diesel engines and miles-between-failures for a

15



car engine. Therein, they compared their approach with the existing learning methods including
ARIMA model as statistical learning method, and they concluded that their approach outper-
forms ARIMA model in term of prediction accuracy. The MSE values for their prediction results
using SVR are presented in Table 8.

We have applied our approach to compute the predictions for these two data sets, and the
MSE values are reported in Table 8. From this Table we can conclude generally that our approach
has comparable prediction accuracy to the SVR approach, whereas Moura et al. [22] concluded
in their work that SVR outperforms ARIMA models. In particular, in the case of data set 1 our
approach outperforms the SVR approach, and our justification is that this data set consists of only
40 observations which is insufficient as a training set for the SVR approach. In contrast, the SVR
approach outperforms our approach in the case of data set 2, which consists of 100 observations.
Consequently, it is worth noting that the required training data set and consumed time for our
approach to construct an adequate prediction model for the process under analysis is dramatically
less than that required by SVR methods. This is because our approach’s methodology is based on
standard statistics theory and probability distributions that can be straightforwardly implemented
without consuming time in learning.

MSE Values RAIMS E

Data set Our Approach Moura et al.’s Values
1 0.0079 0.0094 14.84
2 0.280 0.222 -26.13

Average 0.144 0.116 -5.65

Table 8: MSE and RAIMS E values for Our approach vs. Moura et al.’s approach

6. Conclusion

Among software quality attributes, reliability is generally considered to be the most important
factor because it quantifies software faults and failures, which can lead to serious consequences
in software systems. To estimate and predict this reliability, Software Reliability Growth Models
(SRGMs) are widely used. However, these models have many shortcomings related to their
unrealistic assumptions, environment-dependent applicability, and questionable predictability.
In the literature, researchers have suggested many solutions to address these shortcomings based
on different methodologies, such as non-parametric statistics, neural networks, and Bayesian
networks. However, none of these solutions addresses all the SRGMs’ shortcomings.

In this paper we proposed a well-established prediction approach based on time series ARIMA
models as an alternative solution to address these SRGMs’ shortcomings and the limitations of
the existing approaches, and thereby provide more accurate reliability prediction. The main ad-
vantage of this approach is that it is a data-oriented approach and does not impose any restrictive
assumptions on the environment of the software system that generates the data under analysis.
Using real-life data sets on software failures, the accuracy of proposed approach was evaluated
and compared to that of the SRGMs and existing time series based approaches. This comparison
showed that our proposed approach performed better than other ARIMA-based approaches, and
was compatible in performance and less costly than the SVR approach.

16



References

[1] M. Palviainen, A. Evesti, E. Ovaska, The reliability estimation, prediction and measuring of component-based
software, Journal of Systems and Software 84 (6) (2011) 1054–1070.

[2] M. R. Lyu, Software reliability engineering: A roadmap, Future of Software Engineering (FOSE ’07) (2007) 153–
170.

[3] Z. Jelinski, P. Moranda, Software reliability research, in: Statistical Computer Performance Evaluation, Academic
Press Inc, 1972, pp. 465–484.

[4] M. Lyu, Handbook of software reliability engineering, McGraw-Hill, Inc. Hightstown, NJ, USA, 1996.
[5] A. Goel, Software reliability models: assumptions, limitations, and applicability, IEEE Transactions on Software

Engineering 11 (1985) 12.
[6] D. Zeitler, Realistic assumptions for software reliability models, in: IEEE Intl Symp. Software Reliability Eng,

Citeseer, 1991.
[7] A. Wood, Software reliability growth models: Assumptions vs. reality, in: issre, Published by the IEEE Computer

Society, 1997, p. 136.
[8] K. Sharma, R. Garg, C. Nagpal, R. Garg, Selection of optimal software reliability growth models using a distance

based approach, IEEE Transactions on Reliability 59 (2) (2010) 266–276.
[9] M. Xie, G. Hong, C. Wohlin, A study of the exponential smoothing technique in software reliability growth pre-

diction, Quality and Reliability Engineering International 13 (6) (1997) 347–353.
[10] D. Robinson, D. Dietrich, A new nonparametric growth model., IEEE Transactions on Reliability 36 (4) (1987)

411–418.
[11] M. Barghout, B. Littlewood, A. Abdel-Ghaly, A non-parametric order statistics software reliability model, Software

Testing, Verification and Reliability 8 (3) (1998) 113–132.
[12] M. Neil, N. Fenton, Predicting software quality using Bayesian belief networks, in: Proceedings of 21st Annual

Software Engineering Workshop, Citeseer, 1996.
[13] C. Bai, Q. Hu, M. Xie, S. Ng, Software failure prediction based on a Markov Bayesian network model, Journal of

Systems and Software 74 (3) (2005) 275–282.
[14] N. Fenton, M. Neil, D. Marquez, Using Bayesian networks to predict software defects and reliability, Proceedings

of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability 222 (4) (2008) 701–712.
[15] M. Wiper, A. Palacios, J. Marı́n, Bayesian software reliability prediction using software metrics information, Qual-

ity Technology & Quantitative Management 9 (1) (2012) 35–44.
[16] N. Karunanithi, D. Whitley, Y. Malaiya, Using Neural Networks in Reliability Prediction, IEEE Software 9 (4)

(1992) 59.
[17] P. Pai, W. Hong, Software reliability forecasting by support vector machines with simulated annealing algorithms,

Journal of Systems and Software 79 (6) (2006) 747–755.
[18] N. Kiran, V. Ravi, Software reliability prediction using wavelet neural networks, in: iccima, IEEE Computer

Society, 2007, pp. 195–199.
[19] S. Zaidi, S. Danial, B. Usmani, Modeling inter-failure time series using neural networks, in: IEEE International

Multitopic Conference, 2008, pp. 409–411.
[20] J. Lo, The implementation of artificial neural networks applying to software reliability modeling, in: Proceedings

of the 21st annual international conference on Chinese control and decision, IEEE Press, 2009, pp. 4385–4390.
[21] B. Yang, X. Li, M. Xie, F. Tan, A generic data-driven software reliability model with model mining technique,

Reliability Engineering & System Safety 95 (6) (2010) 671–678.
[22] M. Moura, E. Zio, I. Didier Lins, E. Droguett, Failure and reliability prediction by support vector machines regres-

sion of time series data, Reliability Engineering & System Safety 96 (11) (2011) 1527–1534.
[23] N. Singpurwalla, R. Soyer, Assessing (Software) reliability growth using a random coefficient autoregressive pro-

cess and its ramifications, IEEE transactions on Software Engineering 11 (12) (1985) 1456–1464.
[24] S. Chatterjee, R. Misra, S. Alam, Prediction of software reliability using an auto regressive process, International

Journal of Systems Science 28 (2) (1997) 211–216.
[25] S. Ho, M. Xie, The use of ARIMA models for reliability forecasting and analysis, Computers & Industrial Engi-

neering 35 (1-2) (1998) 213–216.
[26] M. Xie, S. Ho, Analysis of repairable system failure data using time series models, Journal of Quality in Mainte-

nance Engineering 5 (1) (1999) 50–61.
[27] A. Goel, K. Okumoto, A time-dependent error-detection rate model for software reliability and other performance

measures, IEEE Transactions on Reliability 28 (3) (1979) 206–211.
[28] C. Huang, M. Lyu, Estimation and analysis of some generalized multiple change-point software reliability models,

IEEE Transactions on Reliability 60 (2) (2011) 498–514.
[29] P. Kapur, H. Pham, S. Anand, K. Yadav, A unified approach for developing software reliability growth models in

the presence of imperfect debugging and error generation, IEEE Transactions on Reliability 60 (1) (2011) 331–340.

17



[30] S. Brocklehurst, P. Chan, B. Littlewood, J. Snell, Recalibrating software reliability models, IEEE Transactions on
Software Engineering 16 (4) (1990) 458–470.

[31] S. Brocklehurst, B. Littlewood, New ways to get accurate reliability measures [software], IEEE Software 9 (4)
(1992) 34–42.

[32] M. Lyu, A. Nikora, Applying reliability models more effectively, IEEE Software 9 (4) (1992) 43–52.
[33] F. Popeniu, D. Boro, Software reliability growth supermodels, Microelectronics and Reliability 36 (4) (1996) 485–

491.
[34] N. Raj Kiran, V. Ravi, Software reliability prediction by soft computing techniques, Journal of Systems and Soft-

ware 81 (4) (2008) 576–583.
[35] H. Li, M. Zeng, M. Lu, Exploring AdaBoosting algorithm for combining software reliability models, ISSRE.
[36] G. Junhong, L. Hongwei, Y. Xiaozong, An autoregressive time series software reliability growth model with inde-

pendent increment, in: Proceedings of the International Conference on Mathematical Methods and Computational
Techniques In Electrical Engineering, WSEAS, 2005, pp. 362–366.

[37] G. Box, G. Jenkins, Time Series Analysis: Forecasting and Control, Holden Day, San Francisco, 1976.
[38] G. E. P. Box, D. R. Cox, An analysis of transformations, Journal of the Royal Statistical Society. Series B (Method-

ological) 26 (2) (1964) 211–252.
[39] S. Makridakis, S. Wheelwright, R. Hyndman, Forecasting methods and applications, Wiley-India, 2008.
[40] H. Akaike, A new look at the statistical model identification, IEEE Transactions on Automatic Control 19 (6)

(1974) 716–723.
[41] J. Musa, Software reliability data, Data & Analysis Center for Software, Griffis Air Force Base, NY, 1980.
[42] J. D. Gibbons, S. Chakraborti, Nonparametric statistical inference, CRC, 2003.
[43] D. Kwiatkowski, P. Phillips, P. Schmidt, Y. Shin, Testing the null hypothesis of stationarity against the alternative

of a unit root, Journal of Econometrics 54 (1992) 159–178.
[44] G. E. P. Box, D. A. Pierce, Distribution of residual autocorrelations in autoregressive-integrated moving average

time series models, JASA 65 (332) (1970) 1509–1526.
[45] P. Pachowicz, J. Bala, Texture recognition through machine learning and concept optimization, Tech. Rep. MLI

91-4, Machine Learning and Inference Laboratory, George Mason University, Fairfax, VA (1991).

18


